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Abstract.

We describe a new version of the elliptic curve encryption schemes PSEC (Provably Secure Elliptic
Curve). PSEC-3 is a public-key encryption system that uses the elliptic curve El Gamal trapdoor
function and two random functions (hash functions) as well as any semantically secure symmetric
encryption scheme, such as the one-time pad, or any classical block-cipher.

Furthermore, we define a new problem, the Elliptic Curve Gap Diffie-Hellman problem (EC—Gap-
DH) which is likely stronger than the more classical Elliptic Curve Decision Diffie-Hellman (EC-DDH)
problem. Indeed, its tractability would imply the equivalence between the Computational and the
Decisional versions of the Elliptic Curve Diffie-Hellman problem.

PSEC-3 therefore has several outstanding properties as follows:

1. with the one-time pad, PSEC-3 is semantically secure or non-malleable against chosen-ciphertext
attacks (IND-CCA2 or NM-CCAZ2), in the random oracle model, under the Elliptic Curve Gap
Diffie-Hellman (EC-Gap-DH) assumption.

2. with any symmetric encryption, PSEC-3 is semantically secure or non-malleable against chosen-
ciphertext attacks (IND-CCA2 or NM-CCA2), in the random oracle model, under the Elliptic
Curve Gap Diffie-Hellman (EC-Gap-DH) assumption, if the underlying symmetric encryption is
simply semantically secure against passive attacks.

3. if the underlying random functions are replaced by practical random-like functions (e.g., SHA and
MD5), PSEC-3 is as efficient as the basic Elliptic Curve El Gamal scheme, for the encryption
process but also for the decryption process, which is the major novelty of this new proposal.

The encryption scheme described in this contribution is obtained by using a new result on conversion
techniques using random functions by the authors.
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1 Background: Provable Security

During a long time, heuristic security has been accepted by all the people and even
the standard organizations. After many recent attacks against such “heuristically secure
schemes” [6, 8, 17, 15], everybody realized the importance of provable security.

For public-key encryption, the strongest security notion, among all those that have
been defined to capture the standard adversary scenarios, is by now called the chosen-
ciphertext security. Indeed, it prevents [1] both the distinction of encrypted messages
(semantic security [16]) and the malleability of ciphertexts [11] for an adversary who
can ask the decryption of any ciphertext of her choice (the adaptive chosen-ciphertext
attacks [28]).

A promising way to construct a practical public-key encryption scheme that reaches
the chosen-ciphertext security is to convert a primitive trapdoor one-way function (such
as RSA [30] or El Gamal [12]) by using random functions. Here, some hash functions, such
as MD5 [29] or SHA-1 [19], are assumed to behave like ideally random functions. This
so-called random oracle model [3] has already been widely used to provide efficient and
provably secure schemes, for both signature [5, 27, 20, 2] and public-key encryption [4].

Although security in the random oracle model cannot be guaranteed formally when a
practical random-like function is used in place of the random oracle, this paradigm often
yields much more efficient schemes than those in the standard model and gives strong
security arguments.

Two typical primitives of the trapdoor one-way functions are deterministic one-way
permutations (e.g., the RSA function [30]) and probabilistic one-way functions (e.g., El
Gamal [10, 12], Okamoto-Uchiyama [23] and Paillier [25] functions).

Bellare and Rogaway [4] presented a generic and efficient way to convert a trapdoor
one-way permutation into a chosen-ciphertext secure scheme, in the random oracle model.
The scheme created this way from the RSA function is often called OAEP. However, their
method cannot be applied to probabilistic trapdoor one-way functions such as El Gamal,
because it requires the permutation property.

Very recently the authors, together with other people [13, 14, 26, 22] proposed some
generic conversions from any probabilistic trapdoor one-way function into a chosen-cipher-
text secure encryption scheme. The first two conversions led to the EPOC [24] and
PSEC [21] IEEE P1363a proposals.

The most recent conversion can apply to any (partially) trapdoor one-way function
into a chosen-ciphertext secure encryption scheme, in an optimal way, from the compu-
tational point of view. Indeed, all the previous conversions required a re-encryption in
the decryption phase to check the validity of the ciphertext. This new conversion just
needs the basic decryption, without re-encryption. Furthermore, this conversion can be
combined with a symmetric encryption scheme to reach high-speed rates.

2 Description of PSEC-3

2.1 Overview

This section describes the proposed third version of the public-key encryption scheme,
PSEC, which is specified by a quadruple (G,K, £, D), where G sets the system up, gener-
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ating the common parameters, X produces the key-pair for each user, £ is the encryption
algorithm and D the decryption algorithm.

In that description, we assume SymE = (E, D) to be a symmetric encryption scheme
which uses a kLen-bit key.

Remark 1. A typical way to realize SymE is the one-time pad:
Ex(m)=K & m Di(c) = K & ¢,

where @& denotes the bit-wise exclusive-or operation. Therefore, mLen = kLen, where
mLen denotes the maximal message-size which can be securely encrypted.

2.2 Setup: ¢

The input and output of the setup algorithm G are as follows:
[Input | Security parameter k (= pLen), which is a positive integer.

[Output | An elliptic curve-based cyclic group, defined by a finite field, an elliptic curve
and a generator:

e ¢ for a finite field I,

e two elliptic curve coefficients a and b, elements of I, that define an elliptic curve

E
e a positive prime integer p dividing the number of points on £

e a curve point P of order p.

Here the size of p should be k (i.e., |p| = k). Therefore, set pLen « k, and gLen « |q
as well as mLen and kLen depending on SymE and hLen linearly dependent in k.

Moreover, one selects two hash functions

G - {0’ l}qLen N {0’1}kLen
H - {0’1}|01|+2-qLen+mLen N {0,1}hLen

Here, |C1| = qLen + 1, if a point is represented by its z-coordinate and 1 bit signature.
(|IC1| = 2-qLen, if a point is represented by a pair of its z-coordinate and y-coordinate.)

2.3 Key Generation:

The input and output of K are as follows:

[Input ] The common parameters (¢, a,b,p, P,GG, H,qLen,pLen, hLen, mLen) defined by
the setup algorithm.

[Output | A pair (pk, sk) of matching public and secret keys, where sk is randomly chosen
in Z5 and pk is a point on E, pk « sk - P.



2.4 Encryption: &

The input and output of £ are as follows:

[Input ] Plaintext m € {0,1}™L*" along with the public-key pk, as well as the common
parameters (¢, a,b,p, P,G, H,qLen,pLen, hLen,mLen).

[Output | Ciphertext ¢ = (Cy, ¢}, c2, c3).

The operation of £, on input m, pk and (q,a,b,p, P,G, H,qLen,pLen, hLen, mLen),
is as follows:

o Select R € {0,1}¢%*" uniformly.
e Select r € Z; uniformly and compute the points on F, Cy «—r- P and T « r - pk.

e Compute ¢ « z7 & R, K « G(R) and ¢ «— H(Cy,c}, R,m), where zr is the
x-coordinate of T

e Compute ¢; — Ex(m).

2.5 Decryption: D

The input and output of D are as follows:

[Input | Ciphertext ¢ = (C, ¢}, ¢z, ¢3) along with public-key pk and the common pa-
rameters (q,a,b,p, P,G, H,qLen,pLen, hLen, mLen) but also the secret-key sk.

[Output | Plaintext m or null string.
The operation of D is as follows:

e Compute the point on £, 7" « sk - C; (which should be equal to the above T-point)
and R’ « ¢} & zp (which should be equal to the above R).

e Compute K’ «+— G(R’) and m’ «— Dg(c,).
o Check whether the following equation holds or not:

)
: Y / ! !
cs = H(Cy, ¢, R',m’).

e If it holds, output m’ as the decrypted plaintext. Otherwise, output null string.

Remark 2. Since the domains of G and H are fixed by the parameters of ¢Len and others,
only R’ € {0,1}7°" is accepted by the decryption procedure, D. (Note that the domains
of G and H in the conversion of [22] are fixed by the domain of the underlying encryption
function and other parameters.) More explicitly, in D, check if R’ € {0,1}%" (see a
recent remark [18]).
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3 Security Assessment of PSEC-3

This section reviews some results on the security of PSEC-3. They are easily obtained
from [22].

Definition 1 (EC-DH Assumption). Let G be the setup algorithm of PSEC-3, and
(¢,a,b,p, P) be a part of the common parameters. Let r and s be uniformly selected in
Z, and set R« r-P and S « s- P.

The Elliptic Curve Diffie-Hellman (EC-DH) problem is intractable, if for any proba-

bilistic polynomial time machine A, for any constant ¢, for sufficiently large k (= pLen),
PT[A(q’ a, bapa Pa Ra S) = xT] < 1/kca

where T'=1rs - P and z7 is the z-coordinate of T'. The probability is taken over the coin
flips of G and A as well as the random choice of r and s.

The assumption that the Elliptic Curve Diffie-Hellman problem is intractable is called
the Elliptic Curve Diffie-Hellman assumption.

Definition 2 (EC-DDH Assumption). Let G be the setup algorithm of PSEC-3, and
(¢,a,b,p, P) be a part of the common parameters. Let r, s and ¢ be uniformly selected in
Z,, and set R —r-P, S« s-P, T «—1t-Pand U < rs- P. Let b be a random coin. If
b=0, set v «+— x7, otherwise set v «— .

The FElliptic Curve Decision Diffie-Hellman (EC-DDH) problem is intractable, if for
any probabilistic polynomial time machine A, for any constant ¢, for sufficiently large &
(= pLen),

Pr[A(q,a,b,p, P,R, S,v) =b] < 1/2+ 1/k°.

The probability is taken over the coin flips of G and A as well as the random choice of r,
s, t and b.

The assumption that the Elliptic Curve Decision Diffie-Hellman problem is intractable
is called the Elliptic Curve Decision Diffie-Hellman assumption.

Definition 3 (EC-GDH Assumption). The FElliptic Curve Gap Diffie-Hellman (EC-
GDH) problem is intractable, if the EC-DH problem is still intractable even for an adver-
sary who has access to an oracle that perfectly answers the EC-DDH problem.

The assumption that the Elliptic Curve Gap Diffie-Hellman problem is intractable is
called the FElliptic Curve Gap Diffie-Hellman assumption.

Definition 4 (Security of Symmetric Encryption). Let A be an adversary that
runs in two stages. In the first stage, A endeavors to come up with a pair of equal-length
messages, mg and my, along with some state information s, where |mg| = |my| < kLen®,
for some constant a. In the second stage, A is given a ciphertext ¢ «— Ex(m;), where
K € {0,1}*e" and b € {0,1} are randomly and uniformly chosen.

SymE is secure against passive attacks if for any probabilistic polynomial time machine
A, for any constant d, for sufficiently large kLen,

Pr[A(kLen,mg,my,s,¢) = b < 1/2 + 1/kLen".

The probability is taken over the coin flips of A as well as the random choice of K and b.
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Theorem 1 (OTP—PSEC-3). Let SymE be the one-time pad, and thus mLen = kLen.
Let hLen = pLen/a for some constant a. OTP—PSEC-3 is chosen-ciphertext secure in
the random oracle model, provided that the EC-GDH assumption holds.

Theorem 2 (PSEC-3). Let hlLen = pLen/a for some constant a. PSEC-3 is chosen-
ciphertext secure in the random oracle model, provided that the FC-GDH assumption
holds and that the underlying SymE is secure against passive attacks, for suitable kLen
and mLen.

Remark 3. We can also give the concrete efficiency analysis of the reduction for proving
the security, and show that our reduction is efficient [22], and even optimal since the
probability of breaking the EC-GDH problem is almost the same as the advantage of an
adaptive adversary in breaking the chosen-ciphertext security.

4 Attributes and Advantages of PSEC-3

4.1 Security of OTP—PSEC-3
If the Elliptic Curve Gap Diffie-Hellman (EC-GDH) assumption holds, PSEC-3 with one-

time pad is secure in the strongest sense, in the random oracle model, if the parameters
are appropriately selected.

Note that this assumption is quite new. But one can easily show that if the EC-
GDH problem is not intractable, then the EC-DH and EC-DDH problems are equivalent.
However this latter equivalence is very unlikely, and certainly more unlikely than the
tractability of the EC-DDH problem.

The elliptic curve version of the Cramer-Shoup (EC-CS) scheme [9] is provably secure
in the standard model (i.e., without any ideal assumption), however it is based on that
likely stronger number theoretic assumption, the EC-DDH assumption. Furthermore, as
we see below, it is less efficient than ours.

4.2 Security of PSEC-3 with any Symmetric Encryption
If the Elliptic Curve Gap Diffie-Hellman (EC-GDH) assumption holds and the underly-

ing symmetric encryption is secure against passive attacks, PSEC-3 with the symmetric
encryption is secure in the strongest sense, in the random oracle model, if the parameters
are appropriately selected.

The advantage of this scheme is that security in the strongest sense is guaranteed
for the total system that integrates the asymmetric and symmetric encryption schemes.
Therefore, even if the underlying symmetric encryption is secure only against passive at-
tacks (we do not care about active attacks), PSEC-3 guarantees security against adaptive
chosen-ciphertexts attacks (IND-CCA2).

An additional property of PSEC-3 (as other PSEC versions) is authentication and
integrity without using any MAC function. That is, the recipient can confirm whether the
decrypted message is the same as the one the originator sent.

Finally, it also provides a key distribution with session key encryption and then a
symmetric multi-message encryption which achieves chosen-ciphertext security. Indeed,
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the ciphertext can be split, the first part (Cy,¢]) is a constant overhead, and then the
second part (cy,¢3) can be reiterated with many plaintexts:

o Select R € {0,1}7*" uniformly.

e Select r € Z; uniformly and compute the points on £, Cy < r- P and T' + r - pk.

e Compute ¢] «— 27 @& R and K «— G(R).

e Then, for any message m;, compute ¢;; «— Ex(m;) and ¢3; «— H(Cy,c), R,m;), and

send the tuple (Cy, ¢, e24,¢5,).

4.3 Efficiency

The OTP-variant is the most efficient scheme among all the EC-DH based encryption
schemes (see Figure 1). Since it furthermore allows symmetric integration with multi-
message encryption, it achieves an unbeatable efficiency.

Scheme Security | Number Hash Encryption|Decryption
Theoretical Function Cost Cost
Assumption| Assumption

OTP—PSEC-3 IND-CCA2| EC-GDH [Random Oracle| 2E + 2H | 1E + 2H

OTP—PSEC-2 IND-CCA2| EC-DH |[Random Oracle| 2E + 2H | 2E + 2H

OTP—PSEC-1 IND-CCA2| EC-DDH [Random Oracle| 2E + 1H | 2E + 1H

EC-Cramer-Shoupl||[IND-CCA2| EC-DDH UOWHF 5E + 1H | 6E + 1H

EC-El Gamal IND-CPA | EC-DDH None 2E 1E

Fig. 1: Comparison of the different EC-DH-based encryption schemes, where “E” and
“H” denote the costs of an exponentiation and a hashing, respectively.

Under the most practical environment of using public-key cryptosystems, where a
public-key cryptosystem is used associated with symmetric encryption (e.g., triple-DES,
IDEA or any candidate of the AES), a typical example of the parameters is as follows:
first, any message and any list of messages can be encrypted (i.e., mLen = %), then
gLen = kLen = 128 (or 256, according to the block-cipher), hLen = 64, and pLen = k =
160. The encryption and decryption speeds of PSEC-3 are exactly the same as those of
the basic elliptic curve El Gamal scheme [12], plus just 2 more hashings. Therefore, it is
more than three times faster than those of the elliptic curve Cramer-Shoup scheme [9].

5 Limitations

Recently Canetti et al. [7] have demonstrated that it is possible to devise cryptographic
protocols which are provably secure in the random oracle model but for which no complex-
ity assumption property instantiates the random-oracle-modeled hash function. However,



9

the examples they used to make the random oracle model paradigm fail were very con-

trived, so the concerns induced by these examples do not appear to apply to any of the
concrete practical schemes that have been proven secure in the random oracle model.

6

Intellectual Property Statement

NTT has filed patent applications on the techniques used in this contribution. NTT will
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