
Objective

After finishing this training, you will be able to

Understand the history of VHDL

Understand the synthesis process

Become familiar with structure and syntax

Implement combinatorial and registered components with the language

Complete a VHDL design in ISP Lever System

Introduction

VHSIC Hardware Description Language

VHSIC - Very High Speed Integrated Circuit

Intended by DoD as a standard means to document complex circuit among

contractors

Established as IEEE standard 1076 in 1987

Updated as IEEE standard 1164 in 1993

Nowadays VHDL is used to

Document circuits

Synthesize design descriptions

Simulate circuits

About VHDL

Advantages

Device-independent design

do not have to be familiar with device architectures

Portability

same description for synthesis and simulation tools

same description for different platforms

Fast time-to-market and low cost

facilitates speedy design process and design iteration

Possible Shortcomings

Loss control of defining gate-level circuit implementation

Inefficient logic implementations created by synthesis tools

About Synthesis

It is the realization of design descriptions into circuits

VHDL synthesis tools convert VHDL descriptions to technology-specific

equations and netlists

B e h a v io ra l

D e s c r ip tio n

F la tte n in g o f h ie ra rc h y a n d

tra n s fo rm a tio n to a m o n o lith ic

R T L re p re s e n ta tio n

O p e ra to r in fe re n c in g

a n d m o d u le g e n e ra t io n

D e v ic e sp e c if ic o p t im iz a t io n

O p tim iz e d e q u a t io n s o r n e tl is t

fo r u s e w ith a f i t te r

D e v ic e a r c h ite c tu r e

S e le c t io n

U s e r - a p p l ie d

d ir e c t iv e s

VHDL Design Descriptions

VHDL design descriptions consist of an ENTITY and ARCHITECTURE pair

The ENTITY describes the design I/Os

The ARCHITECTURE describes the content of the design

Structural Description:

Instantiation of building blocks referred to as components

Schematic type of placement and connections

Behavioral Description:

Abstract descriptions and Boolean equations

Increase productivity, portability and readability of the design

Black Box
Black Box

d[7:0]

q[7:0]rst

clk

VHDL Overview

LIBRARY ...;

USE ...;

ENTITY black_box IS

PORT (...);

END black_box;

ARCHITECTURE black_box_arch OF black_box IS

-- global signal declarations

-- global constant declarations

BEGIN

name:PROCESS(sensitivity list)

-- local variable declarations

BEGIN

-- sequential statements

END PROCESS name;

...

-- concurrent statements

...

END black_box_arch;

Entity

Architecture

Port

Declarations

Processes

Concurrent
statements

Libraries

The Entity - example

VHDL description of the black box:

ENTITY black_box IS

PORT(rst, clk : IN std_logic;

d : IN std_logic_vector (7 downto 0);

q : BUFFER std_logic_vector (7 downto 0);

co : OUT std_logic);

END black_box;

Names can be chosen by designer, BUT no reserved words,

no äöüß..., no number as first character

Name

Mode

Type

black_boxblack_box

d[7:0]
q[7:0]

rst

clk co

VHDL Reserved Words

Use of reserved words as names will cause errors
ABS

ACCESS

AFTER

ALIAS

ALL

AND

ARCHITECTURE

ARRAY

ATTRIBUTE

BEGIN

BLOCK

BODY

BUFFER

BUS

CASE

COMPONENT

CONSTANT

DOWNTO

ELSE

ELSIF

END

ENTITY

EXIT

FILE

FOR

FUNCTION

GENERIC

IF

IN

INOUT

IS

LABEL

LIBRARY

LINKAGE

LOOP

MAP

NAND

NEW

NEXT

NOR

NOT

NULL

OF

ON

OPEN

OR

OTHERS

OUT

PACKAGE

PORT

PROCECURE

PROCESS

RANGE

RECORD

REGISTER

REM

REPORT

RETURN

SELECT

SIGNAL

SUBTYPE

THEN

TO

TRANSPORT

TYPE

UNITS

UNTIL

USE

VARIABLE

WAIT

WHEN

WHILE

WITH

XOR

XNOR

The Entity

Points of communication of ENTITY are PORTs

Always associate with I/Os of a components or device pins

Similar to “symbols” in a schematic

Does not describe the function of the block

Each PORT must have

A name: must be unique within ENTITY

A list of properties

a direction - known as MODE

a value the PORT can take - known as TYPE

PORT Modes

IN A signal that goes into the entity but not out

OUT A signal that goes out of the entity but not in

and is not used internally

INOUT A signal that is bidirectional (goes into and out of the entity)

BUFFER A signal that goes out of the entity and is

also fed-back internally within the entity

BUFFER is a subset of INOUT but it is not driven externally

PORT Types

VHDL is a strongly typed language. You cannot assign one signal type to another

signal type

integer Useful as index holders for loops and constants.

Not usually used for I/O signals.

boolean Can take values of ‘TRUE’ and ‘FALSE’

std_logic Standard industry logic type, has values of ‘0’, ‘1’, ‘X’,

and ‘Z’ defined by IEEE std 1164.

std_logic_vector A grouping of std_logic, standard

industry logic type, definition for busses

control
structures

hardware
signals

The ENTITY - Example

d is a 16-bit input bus

clk, reset and oe are input signals

q is a 16-bit tri-stateable output bus

ad is a 16-bit bi-directional bus

int is an output signal, that is also sensed internally

as is a tri-stateable output signal

my_design1

d[15:0]

clk

reset

oe

q[15:0]

ad[15:0]

int

as

The Entity - Example

ENTITY my_design1 IS

PORT (d : IN std_logic_vector (15 downto 0);

clk,reset,oe : IN std_logic;

q : OUT std_logic_vector (15 downto 0);

ad : INOUT std_logic_vector (15 downto 0);

int : BUFFER std_logic;

as : OUT std_logic);

END my_design1;

-- q : OUT std_logic_vector (15 downto 0);

-- MSB = q(15) ; LSB = q(0);

-- q : OUT std_logic_vector (0 to 15);

-- MSB = q(0) ; LSB = q(15);

-- Two dashes indicate a comment line in VHDL

The Architecture

ARCHITECTURE black_box_arch OF black_box IS

-- global signal declarations

-- global constant declarations

BEGIN

name:PROCESS(sensitivity list)

-- local variable declarations

BEGIN

-- sequential statements

END PROCESS name;

...

-- concurrent statements

...

END black_box_arch;

Architecture

Declarations

Processes

Concurrent
statements

The Architecture

ARCHITECTURE describes what is in the ENTITY

It describes the behavior of the design

ARCHITECTURE contains the following statements:

Concurrent statements and PROCESS statements:

Statements outside of a PROCESS statement are “concurrent

statements”.

These statements and processes are evaluated concurrently and are

evaluated independently of the order in which they appear.

Sequential statements :

Statements within a PROCESS statement are “sequential statements”

and are evaluated sequentially in terms of simulation.

The Architecture - example

-- This example is simple logic

ENTITY logic IS
PORT (a,b : IN std_logic;

w, x, y : OUT std_logic;
z : OUT std_logic_vector (3 downto 0));

END logic;

ARCHITECTURE behavior OF logic IS

BEGIN

y <= (a AND b);
w <= (a OR b);
x <= ‘1’;
z <= “0101”;

END behavior;

Libraries

Library is a place to keep precompiled packages so that they can

be used in other designs

LIBRARY ieee; -- symbolic name for IEEE standard library

USE ieee.std_logic_1164.ALL; -- name of the package

USE ieee.std_logic_unsigned.ALL;

The “ieee.std_logic_unsigned” library allows the use of certain

operators on “std_logic” type signals.

eg. (count <= count + 1;)

Do not mix signed and unsigned!!! (scope of USE is file)

Entity / Architecture / Libraries - example

Every design has an ENTITY/ARCHITECTURE pair

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE ieee.std_logic_unsigned.ALL;

ENTITY logic IS

PORT (a,b : IN std_logic;

w, x, y : OUT std_logic;

z : OUT std_logic_vector (3 downto 0));

END logic;

ARCHITECTURE behavior OF logic IS

BEGIN

y <= (a AND b);

w <= (a OR b);

x <= ‘1’;

z <= “0101”;

END behavior;

Concurrent Statements - examples

Concurrent statements include

boolean equations

conditional assignments (i.e., when...else...)

instantiations

x <= (a AND (NOT sel1)) OR (b AND sel1);

g(0) <= NOT (y AND sel2);

y <= d WHEN (sel1 = '1') ELSE c;

g(1) <= '0' WHEN (x = '1' AND sel2 = '0') ELSE '1';

z <= “01010101”; -- Binary assignment

z <= x“55”; -- Hexadecimal assignment

inst1: fd11 PORT MAP (d=>din, clk=>clka, q=>qout);

WITH - SELECT - WHEN

Used for concurrent signal assignment (Example):
LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY mux IS

PORT (a, b, c, d : IN std_logic;

s : IN std_logic_vector(1 downto 0;

x : OUT std_logic);

END mux;

ARCHITECTURE mux_with OF mux IS

BEGIN

WITH s SELECT

x <= a WHEN “00”, -- x is assigned based on s

b WHEN “01”,

c WHEN “10”,

d WHEN “11”;

END mux_with;

WHEN - ELSE

Same example of 4-to-1 mux
ARCHITECTURE mux_when OF mux IS

BEGIN

x <= a WHEN (s = “00”) ELSE

b WHEN (s = “01”) ELSE

c WHEN (s = “10”) ELSE

d;

END mux_when;

WITH-SELECT-WHEN must specify mutually exclusive

conditions

WHEN-ELSE does not have to

Standard VHDL Operators

Logical Operators

AND

OR

XOR

NOT

Relational Operators

= Equal to

/= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

The ‘<=‘ operation is also used to signify ‘taking on the value of’

Sequential Statements

A PROCESS is used to describe sequential events and is included in the

ARCHITECTURE of the design.

An ARCHITECTURE can contain several PROCESS statements.

PROCESS statements have 3 parts:
Sensitivity list :

includes signals used in the PROCESS

process is activated when a signal in sensitivity list changes value

PROCESS :

the description of behavior

END statement:

describes the end of the PROCESS

Process - Sequential Statement

Simple example of PROCESS

mux: PROCESS (a, b, s) -- the sensitivity list

BEGIN

IF (s = ‘0’) THEN

x <= a;

ELSE -- define the process section

x <= b;

END IF;

END PROCESS mux;

Here the process ‘mux’ is sensitive to signals ‘a’,‘b’ and ‘s’. Whenever signal

‘a’ or ‘b’ or ‘s’ changes value, the statements inside the process will be

evaluated

IF - THEN - ELSE

IF is a sequential statement and can only be used in PROCESS

To select a specific execution path based on Boolean evaluation of a condition

or set of conditions

PROCESS (sel, a, b, c, d)

BEGIN

IF (sel = “00”) THEN

step <= a;

ELSIF (sel = “01”) THEN

step <= b;

ELSIF (sel = “10”) THEN

step <= c;

ELSE

step <= d;

END IF;

END PROCESS;

Must have an “END IF” statement for every “IF” statement

Caution using “IF-THEN-ELSE”

The following PROCESS does not

specify the value of “q” when “a1” is

equal to “0”, thus creating a “Latch”.

PROCESS (a1, d)

BEGIN

IF (a1 = ‘1’) THEN

q <= d;

END if;

END PROCESS;

The following PROCESS specifies the value of

“q” when “a1” is equal to “0”, thus creating an

AND gate.

PROCESS (a1, d)

BEGIN

IF (a1 = ‘1’) THEN

q <= d;

ELSE null; -- don´t care

END if;

END PROCESS;

CASE - WHEN

CASE is a sequential statement and can only be used in PROCESS

ARCHITECTURE archdesign OF design IS

BEGIN

decode: PROCESS (a, b, c, option)

BEGIN

CASE option IS

WHEN "00" => output <= a;

WHEN "01" => output <= b;

WHEN "10" => output <= c;

WHEN OTHERS => output <= '0';

END CASE;

END PROCESS decode;

END archdesign;

OTHERS is all other possible value for signals of type std_logic

Caution using “CASE-WHEN”

This PROCESS generates an unwanted

latch because not all states are defined.

PROCESS (set,a,b)

BEGIN

CASE sel IS

WHEN “00” => q<=a;

WHEN “11” => q<=b;

END CASE;

END PROCESS;

This PROCESS generates a multiplexer

correctly because states “10” and “01” are

defined.

PROCESS (set,a,b)

BEGIN

CASE sel IS

WHEN “00” => q<=a;

WHEN “11” => q<=b;

WHEN OTHERS => q<=‘0’;

END CASE;

END PROCESS;

Data Objects

SIGNAL statement
used to declare internal signals; external signals are declared in port statement of

entity

interconnects components or processes

may be assigned to an external signal

ARCHITECTURE behavior OF example IS
SIGNAL count: std_logic_vector (3 downto 0);
SIGNAL flag: std_logic;
SIGNAL mtag: std_logic_vector (0 to 3);
SIGNAL stag: std_logic_vector (6 downto 0);

BEGIN
-- always declared in ARCHITECTURE section

represents state elements in a state-machine

ARCHITECTURE behavior OF example IS
TYPE states IS (state0, state1, state2, state3);
SIGNAL memread: states;

BEGIN
-- each state (state0, state1, etc.) represents a distinct state.

Data Objects

CONSTANT

holds a specific value of a type that cannot be changed within the design

description

ARCHITECTURE behavior OF example IS

CONSTANT width: integer := 8;

BEGIN

-- “width” is a constant with integer type and has a value of

“8”

VARIABLE

used to declare local values only within a given PROCESS.

PROCESS (s)
VARIABLE count: std_logic;

BEGIN

-- value of “count” may be modified within this PROCESS

REGISTERS in Behavioral VHDL

3 ways to describe a register
PROCESS (clk)

BEGIN

IF (clk’event AND clk=‘1’) THEN -- rising edge of clk

q <= d;

END IF;

END PROCESS;

-- falling edge of clk => (clk’event AND clk = ‘0’)

PROCESS (clk)

BEGIN

IF RISING_EDGE (clk) THEN

q <= d;

END IF;

END PROCESS;

PROCESS -- no sensitivity list

BEGIN

WAIT UNTIL clk’event AND clk = '1';

q <= d;

END PROCESS;

Synchronous Reset

upcount: PROCESS (clock)

BEGIN

IF (clock’EVENT AND clock = '1') THEN

IF reset = '1' THEN

count <= 0; -- synchronous

ELSE

count <= count + 1;

END IF;

END IF;

END PROCESS upcount;

Only CLOCK is in the sensitivity list because the process becomes activated

only during clock transition

Asynchronous Reset

upcount: PROCESS (clock, reset)

BEGIN

IF (reset = '1') THEN -- reset has higher priority

count <= 0; -- asynchronous

ELSIF (clock’EVENT AND clock = '1') THEN

count <= count + 1;

END IF;

END PROCESS upcount;

This process is sensitive to changes in both CLOCK and RESET, therefore

both signals are included in the sensitivity list

LATCHES - in Behavioral VHDL

example of a D-Latch

ARCHITECTURE behavior OF dlatch IS

BEGIN

PROCESS (ina, enable)

BEGIN

IF (enable = '1') THEN

outa <= ina;

END IF;

END PROCESS;

END behavior;

example of an SR-Latch

ARCHITECTURE behavior OF srlatch IS

BEGIN

PROCESS (set, reset)

BEGIN

IF (set = '1' AND reset = '0') THEN

outa <= '1';

ELSIF (set = '0' AND reset = '1') THEN

outa <= '0';

END IF;

END PROCESS;

END behavior;

Hierarchical Designs

Advantages:

Allows duplication of common building blocks

Components (VHDL models or schematic symbols) can be created, tested and

held for reuse

Smaller components can be more easily integrated with other blocks

Design becomes more readable

Design becomes easier to debug

Design can be partitioned into groups and re-used by other design teams

VHDL testbenches can be used to generate stimuli

COMPONENT

Lower level design

ENTITY add IS

PORT(op1,op2 : IN std_logic_vector(2 downto 0);

result : OUT std_logic_vector(3 downto 0));

END add;

ARCHITECTURE dataflow OF add IS

BEGIN

result <= op1 + op2;

END dataflow;

Lower level design can be instantiated in a higher level entity that may be in a

separate file or in the same file

Device under test can be instantiated in the higher level testbench

COMPONENT (cont´d)

COMPONENT statement is a declaration of an VHDL entity which can be

instantiated (placed) within other models
Example

ENTITY addmult IS

PORT (sig1,sig2 : IN std_logic_vector (2 downto 0);

res : OUT std_logic_vector (4 downto 0));

END addmult;

ARCHITECTURE structure OF addmult IS

SIGNAL s_add: std_logic_vector (3 downto 0);

COMPONENT add -- component declaration (like entity

declaration)

port(op1,op2 : IN std_logic_vector (2 downto 0);

result : OUT std_logic_vector (3 downto 0));

END component;

name of lower level entity

BEGIN key word connecting two levels

add1: add PORT MAP(op1=>sig1, op2=>sig2, result=>s_add);

res <= s_add * 2;

END structure;

VHDL Testbenches

A testbench in VHDL provides the design under test with user

defined input signals described in VHDL

A VHDL testbench is tool and architecture independent

The testbench consists of

an empty entity

an architecture describing the behavior of the testbench

the design under test included as a component

signals for the port connections

a port map connecting the design under test

processes and concurrent statements defining the waveforms of the test

signal

The testbench is the top level of a hierarchical design

For/Use statements connect entities and components in

hierarchical designs

Configurations allow different combiations of entities and

architectures

Testbench Example

LIBRARY ieee;

ENTITY device IS

PORT (clk, rst, din : IN std_logic;

dout : OUT std_logic);

END device;

ARCHITECTURE device_arch OF device IS

BEGIN

PROCESS(rst,clk)

BEGIN

...

END PROCESS;

END device_arch;

LIBRARY ieee;

ENTITY test_device IS

END test_device;

ARCHITECTURE test_device_arch OF test_device IS

COMPONENT device

PORT (clk, rst, din : IN std_logic;

dout : OUT std_logic);

END component;

SIGNAL clk_in,rst_in,din_in,dout_out : std_logic;

BEGIN

dut:device PORT MAP(clk_in, rst_in, din, dout);

clk_driver:process

BEGIN

clk <= '1';

wait for 20 ns;

clk <= '1';

wait for 20 ns;

END PROCESS;

rst <= ’0';

din_in <= '1';

END device_arch;

Device under test

Testbench

CPLD Optimization - Output Enables

VHDL does not have an explicit OE, therefore need to describe the function of OE

ENTITY oe IS
PORT (d : IN std_logic_vector (6 downto 0);

q : OUT std_logic_vector (6 downto 0);
oe,clk : IN std_logic);

END oe;

ARCHITECTURE behavioral OF oe IS
SIGNAL qint : std_logic_vector (6 downto 0);
BEGIN

dff: PROCESS (clk)
BEGIN

IF (clk' event and clk='1') THEN
qint <= d;

END IF;
END PROCESS;
q <= “ZZZZZZZ” WHEN (oe ='O')

ELSE qint;
END behavioral;

q

oe

clk

d qint

CPLD Optimization - BiDirectional Signals

-- “data” is bi-directional EXTERNAL signal

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE ieee.std_logic_unsigned.ALL;

ENTITY loadcntr IS

PORT (clock, load, oe : IN std_logic;

data : INOUT std_logic_vector(7 DOWNTO 0));

END loadcntr;

ARCHITECTURE archloadcntr OF loadcntr IS

SIGNAL count: std_logic_vector(7 DOWNTO 0);

BEGIN

PROCESS (clock)

BEGIN

IF (clock'EVENT AND clock = '1') THEN

IF load = '1' THEN

count <= data;

ELSE

count <= count + 1;

END IF;

END IF;

END PROCESS;

data <= “ZZZZZZZZ” WHEN oe = '0' ELSE count;

END archloadcntr;

data

oe

clock load

Moore State Machine

Moore State Machine

Komb
1

Reg

X
Z

Clk

Komb
2

Y

CPLD Optimization State Machine Moore

FSM
red

green

yellow

start

req

stop

clock rst_fsm

S0

red = 1

req

start

stop

S1

S2

S3

S4

yellow = 1, red = 1

green = 1

yellow = 1

1

0

0

1 0

1

rst_fsm

CPLD Optimization State Machine Moore

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY traffic_light IS

PORT(clock, rst_fsm : IN std_logic;

start, req, stop : IN std_logic;

red, green, yellow : OUT std_logic);

END;

ARCHITECTURE fsm_moore OF traffic_light IS

TYPE states IS (S0, S1, S2, S3, S4);

SIGNAL value, nextvalue : states;

BEGIN

reg: PROCESS (clock, rst_fsm)

BEGIN

IF (rst_fsm='1') THEN

value <= S0;

ELSIF (clock'EVENT AND clock='1') THEN

value <= nextvalue;

END IF;

END PROCESS reg;

CPLD Optimization State Machine Moore
komb1: PROCESS (start, req, stop, value)

BEGIN

CASE value IS

WHEN S0 =>

IF (start='1') THEN

nextvalue <= S1;

ELSE

nextvalue <= S0;

END IF;

WHEN S1 =>

IF (stop='1') THEN

nextvalue <= S0;

ELSE

nextvalue <= S2;

END IF;

WHEN S2 =>

nextvalue <= S3;

WHEN S3 =>

IF (req='1') THEN

nextvalue <= S4;

ELSE

nextvalue <= S3;

END IF;

WHEN S4 =>

nextvalue <= S1;

WHEN OTHERS =>

nextvalue <= S0;

END CASE;

END PROCESS komb1;

CPLD Optimization State Machine Moore

komb2: PROCESS (value)

BEGIN

red <= '0'; yellow <= '0'; green <= '0';

CASE value IS

WHEN S1 =>

red <= '1';

WHEN S2 =>

yellow <= '1';

red <= '1';

WHEN S3 =>

green <= '1';

WHEN S4 =>

yellow <= '1';

WHEN OTHERS =>

red <= '0';

yellow <= '0';

green <= '0';

END CASE;

END PROCESS komb2;

END fsm_moore;

Mealy State Machine

Mealy State Machine

Komb
1

Reg

X
Z

Clk

Komb
2

Y

CPLD Optimization State Machine Mealy

FSM
red
green

yellow

start

req

stop

clock rst_fsm

S0

red = 1

req

start

stop

S1

S2

S3

S4

yellow = 1, red = 1

green = 1

yellow = 1

1

0

0

1 0

1

rst_fsm

CPLD Optimization State Machine Medvedev

Medvedev State Machine

Komb Reg

X
Z Y

Clk

CPLD Optimization State Machine Medvedev
LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY traffic_light IS

PORT(clock, rst_fsm : IN std_logic;

start, req, stop : IN std_logic;

red, green, yellow : OUT std_logic);

END;

ARCHITECTURE fsm_med OF traffic_light IS

SIGNAL states : std_logic_vector(2 downto 0);

-- Reihenfolge der Ausgangsregister: red, green,yellow

CONSTANT S0 : std_logic_vector(2 downto 0) := "000";

CONSTANT S1 : std_logic_vector(2 downto 0) := "100";

CONSTANT S2 : std_logic_vector(2 downto 0) := "110";

CONSTANT S3 : std_logic_vector(2 downto 0) := "001";

CONSTANT S4 : std_logic_vector(2 downto 0) := "010";

BEGIN

komb_reg: PROCESS (clock, rst_fsm)

BEGIN

IF (rst_fsm='1') THEN

states <= S0;

ELSIF (clock'EVENT AND clock='1') THEN

CASE states IS

WHEN S0 =>

IF (start='1') THEN

states <= S1;

ELSE

states <= S0;

END IF;

CPLD Optimization State Machine Medvedev

WHEN S1 =>

IF (stop='1') THEN

states <= S0;

ELSE

states <= S2;

END IF;

WHEN S2 =>

states <= S3;

WHEN S3 =>

IF (req='1') THEN

states <= S4;

ELSE

states <= S3;

END IF;

WHEN S4 =>

states <= S1;

WHEN OTHERS =>

states <= S0;

END CASE;

END IF;

END PROCESS komb_reg;

red <= states(2);

yellow <= states(1);

green <= states(0);

END fsm_med;

CPLD Optimization - State Encoding

Many CPLD VHDL implementations use “one-hot” encoding. “One-hot”

uses a register for each device state (state-per-bit), with only one register

active (or “hot”) at a time.

Use “maximal” encoding for CPLDs it is typically faster and results in better

device utilization

Don’t leave optimization solely to your tools; understand your device-

architecture characteristics and tailor your design accordingly

Some tools automatically select an optimum state machine in response to

your circuit implementation, guidance, or both (for example, prioritizing

performance to the compiler), whereas other tools always default to one

method unless you override them

Synplify has a checkbox “Symbolic FSM Compiler” which leads to an

automatic recognition and special optimization of your FSMs if checked

CPLD Optimization - Undefined States

When all values are not explicitly defined, synthesis results may be

unexpected

Whether using IF-THEN-ELSE, CASE-WHEN, WITH-SELECT-

WHEN or WHEN-ELSE statements, not defining all possible values

or states can result in unwanted “Latches”

Appendix I - Lattice Specific - Global OE

To use the Global OE available in the CPLD, simply lock the OE signal to the

Global OE pin in the Fitter.

If the OE controls several different outputs in the design, ensure that the polarity

are the same and the polarity is the same as the Global OE in the CPLD.

q <= "ZZZZZZZ" when (oe='0') else qint;

Appendix I - Lattice Specific - Global Reset I

To use the Global Reset pin in the CPLD, ensure that ALL reset signals in the

ENTITY have the same reset name

Keep in mind that ALL registers have implied resets that connect to the Global

Reset pin. If you specify a reset signal in your design, then you need to specify a

reset signal for EVERY register and latch used. Otherwise, the Fitter will assign

it to a PT reset

In the Fitter, you must specify to “use Global Reset”

Appendix I - Lattice Specific - Global Reset II

The following PROCESS does not specify a reset signal. There is

however an implied reset signal (Global Reset) connected to the register.

PROCESS (clk)

BEGIN

IF (clk’event AND clk = ‘1’) THEN

q <= d;

END IF;

END PROCESS;

The following PROCESS specifies a reset signal. There is also an implied

reset signal (Global Reset) connected to it. To make “rst” connect to

Global Reset pin, must “use Global Reset” in the Fitter.

PROCESS (rst, clk)

BEGIN

IF (rst = ‘1’) THEN

q <= ‘0’;

ELSIF (clk’event and clk = ‘1’) THEN

q <= d;

END IF;

END PROCESS;

Appendix I - Lattice Specific - IO as a Register

VHDL file is similar to any Register description

ARCHITECTURE behavior OF ioreg IS

BEGIN

PROCESS (rset, clka)
BEGIN

IF (rset = '1') THEN
qout <= '0';

ELSIF (clka'event AND clka = '1') THEN
qout <= qin;

END IF;
END PROCESS;

END BEHAVIOR;

Appendix I - Lattice Specific - IO Cell as a Latch

VHDL file is similar to any D-type Latch description

ARCHITECTURE behavior OF iolatch IS

BEGIN

PROCESS (le, qin)
BEGIN

IF (le = '1') THEN
qout <= qin;

END IF;
END PROCESS;

END BEHAVIOR;

Literature

IEEE Standard VHDL Language Reference Manual

IEEE-1076-1992/B

Structured Logic Design with VHDL

J.R. Armstrong, F.G. Gray; Prentice Hall, Englewood Cliffs, 1993

Schaltungsdesign mit VHDL

Lehmann, Wunder; Franzis, ISBN 3-7723-6163-3

The VHDL Cookbook

P.J. Ashenden; via FTP chook.adelaide.edu.au or du9ds4.fb9dv.uni-

duisburg.de

A VHDL Primer

J. Bhasker, Prentice Hall 1992, ISBN 0-13-952987-X

